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ABSTRACT
Developments of Volume Averaging Theory (VAT) to describe transport phenomena in heterogeneous media

are applied to optimization of heat dissipation from a heterogeneous media. The media is an unspecified porous (het-
erogeneous) layer and the optimization process is accomplished with rigor using the idea of scaled energy transport.
The enhancement of heat transport is stated mathematically in a way that the lower scale conventional pin heat trans-
port enhancement and the performance of the total device are incorporated for optimization. The problem is addressed
in three steps: 1) solution of a two-temperature problem with inclusion of experimental data correlations, 2) statistical
design of experiments (simulating the problem) for problems with many optimization parameters, and 3) optimization
of 2D heterogeneous volumetric heat removal by conduction and convective exchange. The analysis distinguishes cer-
tain classes of distributed parameter optimization statements whose solutions determine global ’’in-class’’ upper limits
of heat enhancement (for a given set of physical assumptions).

1. ITRODUCTION
Development of a VAT mathematical basis and models for optimization of a heterogeneous, hierarchical scaled

media began with work by Travkin, Gratton and Catton [1] and is followed by a series of papers [2-4] documenting
the development of a method that is applicable to a wide variety of transport phenomena ranging from fluid mechan-
ics to crystal photonic band-gap problems [5], clearly demonstrating the interdisciplinary nature the multi-scale VAT
description of transport phenomena. The theoretical development of transport phenomena in heterogeneous media
with multiple scales has now been brought to the level where a specific application can be chosen for demonstration.
The application chosen is enhancement of heat transfer dissipation from a heterogeneous media while minimizing the
frictional resistance (a problem of importance to all designers of heat exchangers). This problem has been under inves-
tigation for more than 3 decades and in spite of its longevity and importance as a problem, it has not been satisfactorily
treated.

A majority of past investigations focused on solutions to a specific optimization task with a very limited
number of spatial parameters to be varied, usually a fixed geometric configuration, that they tuned in their search
for a maximum level of heat exchange (see, for example, Bejan and co-authors [6,7] and references therein). This
approach is a ’’single-scale’’ approach yielding an optimum for a certain morphology and flow intensity without giving
an explanation for why it was achieved. Without an explanation, there is no guidance on how to change the design to
improve its performance. For each new morphology, the experiment, whether real or numerical, needs to be performed
again. In the heat exchanger industry there are countless research studies devoted to this problem.

In this work we outline how earlier studies [1-5] can be applied to a practical application. The present treatment
of the heat exchange optimization process can be applied to any specific hierarchical heterostructure with the aim to
optimize its performance. What has been done is a demonstration of the only heterogeneous media modeling tool that
combes both mathematical and morphological descriptions in one problem statement.

2. VAT EQUATIONS IN THE FORM OF CONTROL EQUATIONS
The averaged laminar momentum equation

º
@
@z

Ã
hm (z)i @ eU (z)

@z

!
+ UMConv + UMFriction ¡ UMDrag =

1
½f

@ (hm (z)i ep)
@x

; (1)

is ’’controlled’’ by the three morphological terms that are defined as the ’’morpho-convective’’ fluctuation field distri-
bution based term
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and the solid phase drag resistance term

UMDrag (pj ; @Sw) =
1

%f¢

Z

@Sw

p
!
ds; (4)

where the second left hand side term @
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cal velocities - W and fW; or bw = W ¡ fW; seen in the first term, do not exist at the macrolevel because z direction
momentum transport is only present locally close to obstacles. In traditional (homogeneous) one-scale shape optimiza-
tion approaches these three terms are not presented (see, for example, Ledezma et al. [7]) and, as a result, optimization
methods are very restricted in their value and clearly the macroscopic behavior cannot be related to the bottom scale
enhancement.

The laminar fluid energy equation is
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with the five additional control terms being
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Finally, the solid phase energy equation has the similar additional terms. In the turbulent regime, the momen-
tum, fluid energy and solid energy equations are similar to what are shown but with an increased number of control
terms and more complexity. They are not reproduced here and can be found in [2,4,5]. Some discussion about how
they will be dealt with is found in the final section of this paper.

The control equations are made general by non-dimensionalization with the following scaling, see Fig. 1,

Sw = S¤
wSwm; z = zmz¤; zm =

4m0

Swm
; eU = umu¤; Tm =

zmQ0

KTm
; º = zmumº¤; hm (z)i = m0 hm¤i ;

cd = C¤
dcdm; cdm =

2u2
m

u2
0

;
1
%f

d hpif

dx
= ¡u2

m

zm
; kfm = zmumcpf%f ; kf = k¤

fzmumcpf%f ; ks = k¤
szmumcp%s:

The parameters resulting for laminar flow through a morphology that is constant normal to the flow direction are given
in the following table with there possible ranges. These parameters are at the discretion of the designer of a heat transfer
device and can be used for optimization.
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There are six nondimensional control parameters and functions, denoted Medium Specific Control Functions
(MSCF),that control the heat and momentum transport in the selected porous medium and that can be modified to
optimize the performance. The two terms with the broadest range also have the greatest influence on the outcome. If
the morphology functions denoting porosity, hm (z)i ; and specific surface area, Sw (z) ;are coordinate specific, then
the equations and and parameters sets are different yielding eight control parameters instead of six. A similar exersize
for turbulent flow with hmi = const; Sw = const will yield eight optimization parameters.

3. PRELIMINARY OPTIMIZATION METHODS
Some simulation results using VAT based transport and closure models for flow in a channel with rib roughened

walls, spherical beads, round tube banks and square tube banks yielded optimal configurations. The morphology
models used in the numerical simulations are shown in Fig.1 (see [9]).

The parameters chosen for simulation of flow across spherical beads in a channel were pitch, P = 20mm;
channel height, 2h = 200mm;. and bead diameter, 0:001mm < dp < 20mm. When the diameter of the beads is
large, the disturbance of the porosity across the channel is large and the flow resistance plays an important role. As a
result the disturbance of the velocity profile is large. When the porosity approaches unity the disturbance of velocity
profile disappears and the velocity distribution approaches the theoretical distribution. From a physical viewpoint, this
is obvious. When there are no obstacles in the channel, the channel the results are consistent with the theoretical results
in contrast with some other models.

The pitch chosen of the rods are the same as those for the beads. The height of the rods is the same as channel
height. . The porosity is easily varied from 0 to 1:0: by ranging the tube dimension, dp. The friction factor for flow
across square tube banks and circular tube banks were developed from the micromodeling results of Souto & Moyne
[10] and Watanabe [11] respectively.

By application of SVAT closure models to some general morphology models (orifices and plane slits), in
limiting cases, it was demonstrated earlier [1-3,8,9] that both the transport model and the closure scheme are reasonable.
At the same time, studying the limiting cases of porosity in the channel highlighted mistakes in other studies. The
numerical results demonstrate how the simplest morphological properties of a porous layer such as porosity function
and specific surface along with closure models naturally affects the transport features and and that it can be helpful in
the development of optimized morphologies.

Fig. 2 shows the dependence of the effectivness number, Eff ; on the porosity for different morphologies at
different Reynolds numbers. Eff is a combination of the Nusselt number, the friction factor and the pore Reynolds
number,
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Fig 2 shows how Eff increases as the porosity of the channel decreases. When the porosity decreases, the beads inside
the channel play a more important role in increasing the heat transfer while increasing the flow resistance. (for channel
filled with regularly arranged spherical beads, the porosity of the channel has a lower limit of 0.4). Fig. 3 and 4 clearly
demonstrates an optimum value of Eff .When the porosity is higher than some critical value, the porous media play a
more important role in increasing the heat transfer than in increasing the drag resistance. But when the porosity is too
low, the drag resistance will be high and Eff will approach 0 when the porosity approaches 0.

When the problem becomes multi-dimensional, 6D or 8D, according to [12-15], it is convenient to use the
statistical design of experiment (DOE) methodology.An optimal response surface was found in two steps. First, nu-
merical simulation was carried out based on statistical selction of the parameter values. Second a statistical analysis
of the results was used to develop a response surface. This procedure was implemented using a commercial computer
code based on DOE.

When the optimization variable is choosen, in our case Eff ;the variables are systematically defined, see the
table of parameters developed above. Next, the numerical experiment design type is selected,e.g. a classical two level,



mixed level,or nested level. The design type used in this work is the classical two level design. The classical two
level designs are based on standard orthogonal arrays that contain two levels for each experimental variable. It enables
estimation of the effects of some or all terms in a second order model of the general form

Eff = a0 + a1X1 + a2X2 + ::: + anXn + a11X2
1 + a12X1X2 + ::: + an;n¡1XnXn¡1 + annX2

n
The independent variables X1;X2;:::Xn are the design variables L3N :::LB8. Based on the design type and

design variables, experiment design options will be created. Each option is a set of input parameters for numerical
simulation.Description of what was done to obtain the ’’experimental results’’ from the VAT based laminar or turbulent
transport equations for flow in a specific porous media is decribed elsewhere (see [8,9] ).

After numerical simulation, the numerical results are rigorously analyzed using statistical analysis tools and
graphics tools. These tools include nonlinear response/error analysis, experimental error analysis, regression analysis,
residuals analysis, two dimensional graphing, three dimensional response surface graphing, and multi response opti-
mization. One of the response surfaces of our study is shown in Fig. 5. The three dimensional figure shows Eff
as a function of two variables LP2 and LM4 (these were chosen for simplicity from the eight independent varables
analysed) when the other variables are fixed. Although limited by the range of the variables, the optimum point is
shown on the figure.and the trend of the response surface clearly shown in Fig. 5.

4. TWO- AND THREE-SCALE OPTIMIZATION STUDY
Closure of the turbulent regime VAT equations for a porous flat channel also requires closure of additional

terms in the governing equations. This is done (as for laminar regime) using Direct Numerical Modeling (DNM). The
four terms arrising in the momentum equation are
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the seven terms in the fluid temperature equation

@
@x

0
@

*
bKT

@ bT f

@x

+

f

1
A ;

@
@z

0
@

*
bKT

@ bT f

@z

+

f

1
A ; cpf%f

@
@x

µ
hmi

n
¡bT f bu

o
f

¶
; cpf%f

@
@z

µ
hmi

n
¡bT f bw

o
f

¶
;

(13)

@
@x

2
4

³
eKT + k

´

¢

Z

@Sw

T f
!
ds

3
5 ;

@
@z

2
4

³
eKT + k

´

¢

Z

@Sw

T f
!
ds

3
5 ;

1
¢

Z

@Sw

(KT + k)
@T f

@xi
¢

!
ds (14)

and five terms in the solid phase temperature equation
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The mathematical implementation needed to obtain closure of the momentum resistance terms, for example,

for optimization of the morphology of straight rib fins, see Fig. 6a,b; is dictated by the geometry of the fins. For

example, if
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The calculation of the form drag portion of resistance loss in momentum VAT equation is done in the same
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This is the classical form drag portion of the total kinetic energy loss (shown here only for the x-component). Closure
of other terms in the VAT equations are based on the specific two- or three scale morphologies chosen.

Our analysis of many existing morphological solutions has led us to conclude that the scaled hierarchical VAT
description gives us the ability to find an optimum morphology that cannot be improved when the selection of fluids
and solid phase materials has been made, and the pressure drop through the media is specified. Given these initial
conditions (restrictions), it is possible to find a morphology that cannot be improved based on two scale heat transport
meaning that there is no other solid phase configuration that can be more efficient than the one that has been found.

5. SUMMARY
In this breif paper we have illustrated a method hierarchical optimization of two- and three scale heat transport

in a heterogeneous meda. It is shown how traditional governing equations developed using rigorous VAT methods can
be used to optimize surface transport processes in support of heat transport technology.

The difficulty in treating a multiparameter (more than 3 ) problem, even linear, arewell known to be very
difficult to overcome using a parameter sorting process. The combination of VAT based equations and the theory of
statistical design to was used to effectively begin treating 6D or 8D optimization volumes.

We have shown how a two scale heterogeneous heat transfer optimization problem can be solved using exact
procedures for closure of additional differential and integral VAT terms. This method is shown to be as simple as calcu-
lating the appropriate integrals over the morphologies with coordinate surfaces of interfaces pertinent to a morphology
of interest. For more complex or even unknown morphologies, as initial spacial morphologies the mathematical meth-
ods were outlined in detail. These three tasks were carried out, albeit for some elementary morphologies, for the first
time.
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